Conversion of Infix expression to Postfix expression
Example 3:
Given Infix
Expression: ( ( A – ( B + C ) ) * D ) $ ( E+ F )
|
Symbol
|
Operator
Stack
|
Postfix String
|
|||||
[0]
|
[1]
|
[2]
|
[3]
|
[4]
|
|
|||
1
|
(
|
(
|
|
|
|
|
|
|
2
|
(
|
(
|
(
|
|
|
|
|
|
3
|
A
|
(
|
(
|
|
|
|
|
A
|
4
|
-
|
(
|
(
|
-
|
|
|
|
A
|
5
|
(
|
(
|
(
|
-
|
(
|
|
|
A
|
6
|
B
|
(
|
(
|
-
|
(
|
|
|
AB
|
7
|
+
|
(
|
(
|
-
|
(
|
+
|
|
AB
|
8
|
C
|
(
|
(
|
-
|
(
|
+
|
|
ABC
|
9
|
)
|
(
|
(
|
-
|
|
|
|
ABC+
|
10
|
)
|
(
|
|
|
|
|
|
ABC+-
|
11
|
*
|
(
|
*
|
|
|
|
|
ABC+-
|
12
|
D
|
(
|
*
|
|
|
|
|
ABC+-D
|
13
|
)
|
|
|
|
|
|
|
ABC+-D*
|
14
|
$
|
$
|
|
|
|
|
|
ABC+-D*
|
15
|
(
|
$
|
(
|
|
|
|
|
ABC+-D*
|
16
|
E
|
$
|
(
|
|
|
|
|
ABC+-D*E
|
17
|
+
|
$
|
(
|
+
|
|
|
|
ABC+-D*E
|
18
|
F
|
$
|
(
|
+
|
|
|
|
ABC+-D*EF
|
19
|
)
|
$
|
|
|
|
|
|
ABC+-D*EF+
|
20
|
|
|
ABC+-D*EF+$
|
So the corresponding Postfix expression is ABC+-D*EF+$
No comments:
Post a Comment